If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-23x+125=0
a = 1; b = -23; c = +125;
Δ = b2-4ac
Δ = -232-4·1·125
Δ = 29
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-23)-\sqrt{29}}{2*1}=\frac{23-\sqrt{29}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-23)+\sqrt{29}}{2*1}=\frac{23+\sqrt{29}}{2} $
| 5x-3+5x=27 | | 5x+3+5x=27 | | 5x+15x=20 | | x+x+12=40 | | 3(x-3)=117 | | 1.4a+3.5a-1.3=44.7 | | (x+2)/3=-1 | | 12+36=13y-7 | | 1.25+2y=709 | | 3(1+c)=2c-6) | | 6x-9=4x39 | | 2y-1=3y-25 | | 9(y+2)=65 | | -28-(-1)=x/4 | | 4m-(9)=5m+7 | | x=x-20= | | 5(3c-1)-2=12c+5 | | 3^x=(1/9)^2x-10 | | 5x+-9=2x+3 | | x+10x=11 | | x-3(x-4)=10 | | x-4x=22 | | -13x-20=12x+45 | | 6+19v=20v-13 | | 6+4x=5x | | 6x-6=2x-1 | | 12+2x-5=4x+7-2x | | 14-10t=7t-20 | | X+1÷6=2x+12÷5 | | -2.8x+5.6=8.4 | | 200+24m=1845 | | X+1/6=2x+12/5 |